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For the ID fully asymmetric exclusion model with open boundary conditions, 
we calculate exactly the fluctuations of the current of particles. The method used 
is an extension of a matrix technique developed recently to describe the equal- 
time steady-state properties for open boundary conditions and the diffusion 
constant for particles on a ring. We show how the fluctuations of the current are 
related to non-equal-time correlations. In the thermodynamic limit, our results 
agree with recent results of Ferrari and Fontes obtained by working directly in 
the infinite system. We also show that the fluctuations of the current become 
singular when the system undergoes a phase transition with discontinuities 
along the first-order transition line. 

KEY WORDS: Stochastic lattice gas; asymmetric exclusion; diffusion 
constant. 

1. I N T R O D U C T I O N  

The  o n e - d i m e n s i o n a l  a symmet r i c  s imple  exclus ion  process  ( A S E P )  tl-3) is 

one  o f  the  s implest  examples  o f  a s tochas t ic  sys tem ou t  o f  equi l ib r ium/4 '5)  

It  descr ibes  a d r iven  lat t ice gas wi th  h a r d - c o r e  repuls ion;  it can  also be 
re la ted to h o p p i n g  conduc t iv i ty ,  t6) g r o w t h  processes ,  tT's~ traffic j a m s  or  

queu ing  mode ls ,  ~9) and  the p r o b l e m  of  d i rec ted  po lymer s  in r a n d o m  
media/~O, ~l) 

The  s teady-s ta te  o f  the fully a s y m m e t r i c  exc lus ion  process  is k n o w n  
exact ly  ~12-15) in one  d imens ion .  F o r  pe r iod ic  b o u n d a r y  condi t ions ,  (t2) the  
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stationary state is simple: all configurations have equal probabilities. 
For open boundary conditions, the steady-state is more complicated~3~; 
nevertheless it was shown that the stationary weight of a configuration can 
be expressed as a product of noncommuting matrices. 1~4J With such a 
matrix method, arbitrary equal-time correlation functions in the steady- 
state can be computed. Exact expressions of the density profile and the 
current have been obtained for arbitrary input and output rates (~ and fl) 
at the two ends of the system and for arbitrary system sizes. In the limit of 
infinite systems, the expression of the current becomes nonanalytic across 
some lines in the ct-fl plane separating the phase diagram into three 
regions: a low-density phase, a high-density phase, and a maximal current 
phase.t~3-16~ 

Non-steady-state properties It7~ or unequal-time correlation functions in 
the steady-statC~s~ are much harder to compute for this model. The eigen- 
values of the master equation can be determined by a Bethe AnsatztJ9"/~ 
however, the eigenvectors are complicated enough that the expressions of 
unequal-time correlations remain very difficult to obtain. Several physical 
quantities can be expressed in terms of these correlation functions, in par- 
ticular the variance of the number of particles that flow through a marked 
bond in the system. This variance increases linearly with time. The rate of 
increase is a quantity A which can be interpreted as a diffusion constant/2~ 
The goal of this paper is to calculate exactly this diffusion constant for the 
ASEP in one dimension with open boundary conditions. 

In a recent work, an exact expression for the diffusion constant of a 
marked particle has been obtained using a matrix formulation t22~ for all 
lattice sizes and all possible numbers of particles for the ASEP with periodic 
boundary conditions. 

In the present paper, we extend this approach to calculate a similar 
quantity A in the case of open boundary conditions. The solution obtained 
here is more intricate than in the periodic case, as the steady-state itself has 
a more complex structure. In particular it involves matrices the elements of 
which are themselves matrices. We will show that in the maximal current 
phase, A vanishes in the thermodynamic limit, whereas it has a nonzero 
limit in the other two phases. Also, A exhibits singularities at the phase 
boundaries. As a by-product of our calculation, we also obtain exact 
expressions of the time integrals of some unequal-time correlation 
functions. 

The paper is organized as follows: in Section 2 we derive an expression 
for A in terms of quantities s(rg) which in Section 3 we calculate using an 
extension of the matrix technique; in Section 4 we present numerical and 
exact calculations of A and in Section 5 we discuss the relation to non- 
equal-time correlation functions; we conclude in Section 6. 
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Let us first recall the dynamics of the one-dimensional exclusion model 
with open boundary conditions. Each site i (1 ~< i~< N) of a one-dimen- 
sional lattice of N sites is either occupied by a particle ( r ;=  1) or empty 
(z;=0). During every infinitesimal time interval dt, each particle in the 
system has a probability dt of jumping to the next site on its right (for all 
particles on sites 1 ~< i ~< N - 1 )  if this neighboring site is empty. Further- 
more, a particle is added at site i =  1 with probability 0t dt if site 1 is empty 
and a particle is removed from site N with probability fl dt if this site is 
occupied. 

In the long-time limit, the system reaches a steady-state. In the steady- 
state it has been shown 1'4) that the probability p(qr of finding in configura- 
tion cg= {r,, r2 ..... rN} can be expressed as 

p(C#) = <~1 l-I ( r ;D+( l - r ; )E)  Ifl> (1) 
i = l  

where D and E are matrices and <~[ and [fl> are vectors satisfying the 
following algebraic rules: 

D E = D + E  

1 
D 

< ~ 1 E = I  <0q (2) 

The normalization Z N is given by 

z ~  = <~1 c ~ IP> (3) 

where 

C = D E = D +  E (4) 

It was shown in ref. 14 that noncommuting matrices which satisfy (2) 
have to be of infinite dimension. (Only in the special case ~ + f l =  1 can D 
and E be chosen to be one dimensional, D = 1/[3 and E =  1/co.) Several 
representations of (2) are possible, ''4) for example, 

/ 1/p 
0 - 
0 

D =  0 

1/~ 1/~ 1/~ 
1 1 ! 

0 1 1 
0 0 1 

.\ 

E =  

/0 0 0 0 . \  

/ 

1 0 0 0 

0 1 0 0 
0 0 1 0 (5) 
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<<~1 = (1,  (1 /~ ) ,  (1/~<): .), 177> = (6) 

2. THE MASTER EQUATION AND ITS CONSEQUENCES 

The main quantity we consider in this paper is the total number of 
particles having entered the system up to time t. Let us call this number Y,. 
In the long-time limit, the current J of particles entering the system is 
constant; it is simply the probability that the first site is empty in the 
stationary state multiplied by 0q the rate at which particles attempt to enter 
the system. Thus, using the algebraic rules (2), we have 

<~1 E c  '~- '  I/~) <~1 c u - '  Lfl> 
J = ~  <~1 c u Ifl> <~1 c N Ifl> (7) 

If ( ->  denotes an average over the history of the dynamics and steady- 
state initial conditions, one has 

1 
- < Y , ) = J  (8) 
t 

Our aim is to study the fluctuations of Y,. We shall show that in the long- 
time limit, 

( y 2 > _ ( y t > 2  
,A (9) 

where A is a quantity of the same nature as the diffusion constant in ref. 22 
and is related to non-equal-time correlations (see Section 5). 

Let Pt( Y, cg [ %) be the probability that the system is in configuration 
c~ at time t and that Y, = Y, given that at time t = 0 the configuration was 
%. The time evolution of P,( Y, ~ [ c g0) can be written in the following 
form: 

d 
at P'( r ,  ~ 1%) 

= ~ [P,(Y, CgI~,)-P,(Y,~I%)]Mo(Cg~,%) 
~gt ~ ~go 

+[P,(Y-- I ,~Icg , ) - -P , fY ,~I~o)]M,(~ ,%)  (I0) 
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where Mo(Cg~, % ) d t  is the probability of going from % to ~g~ without 
adding a particle at site 1, and Ml(Cgl, % ) d t  is the probability of going 
from % to cg 1 by adding a particle at site 1, in a time interval dt. If one then 
defines 

Mo(Cgo, ~'o)= - 
"r # %  

Eq. (10) becomes 

[ Mo(Cd,, ~o) + M,(~'~, ~o)] 

d 
.,-s P,( Y, ~ 1%) = ~ P,( Y, ~r I ~ , )  Mo(ff, ,  %) + P,( Y -  1, cg I ~, ) Ml(Cg,, %) 
$/.g ~ j  

11) 

The continuous-time transition matrix of the ASEP is given by 

M(Cg,, ~)  = Mo(Cg,, cg) + Ml(Cg,, c~) 

It has the two essential properties 

M(Cg ', ~ )  = 0 

M(Cg,, c~) p(C~) = 0 
~g 

12) 

13) 

Equation (12) expresses the conservation of probability and (13) the fact 
that the p(Cd) are the steady-state weights. Let us define the following two 
quantities: 

p,(Cgl%)=~,P,(Y, Cgl%) and q,(~I%)=~P,(Y, CgI%)Y (14) 
Y Y 

The equations satisfied by p,(Cdl%) and q , (~ 1%)  can be found by 
appropriately summing ( 11 ), 

d 
dt p , (~  1 % ) =  Y', p , (~  I r %) (15) 

~t  

d ~qt(~glCgo)=~q,(Cg]~gt) M(~, %)+~.p , (~g  [ rg~)Ml(r~l, r~o ) (16) 
r~l "gl 
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In the long-time limit, one can show (see Appendix A) that their asymptotic 
behavior is given by (23) 

p,(~e 1%) --' p(C.g) 17) 

q,(Cg 1 % ) -  JP(Cg) t ~ r(c'g) + p(Cg) s(Cgo) 18) 

The average of Y, given that the initial configuration was % is 

( Y, I%> = ~. q,(C.g I%) ~-Jt+~.r(~)+s(Cgo) 19) 

For large t, one sees from (19) that the leading behavior is determined by 
the steady-state current, which does not depend on cg o, but the memory 
s(%) of the initial configuration is kept in the subdominant term, which 
does not grow with t. 

By multiplying the two sides of(11) by P(Cgo) and Y or y2, summing 
over %, cg, and Y, and using (13), we obtain the equations for the time 
derivatives of the first two moments of Y,, 

d 
dt ( Y ' )  = y'  M~(Cg~' %) P(Cg~ (20) 

% ,  ~i 

d 
~ ( Y ~ ) = 2  )-" q,(Cg l cg,) M,(Cg~, ~o) p(Cgo) + ~. M~(Cg,, cgo) p(Cgo) 

~',%,'6'i r6b, egl 

(21) 

Equation (20) provides an expression for the current 

J = ~ M,(C-g,, %) p(C~o) (22) 

Combining (20) and (21), we can write the time evolution of the fluctua- 
tions of Y, as follows: 

d(  , 
dt ( Y 7 )  - ( y , ) 2 )  

d d 
= ~  ( r , )  -2(  r,) ~ ( r , )  

=2 Z q,(Cr I cr ) M~(CCt, %) P(Cr + J -  2J ~ q,(Cg [ ego) p(C.go) 
~r 

(23) 
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Inserting in both sides of this equation the expected long-time behavior (9), 
(17), and (18), one obtains the expressions of the diffusion constant in 
terms of s(Cg), 

A = J + 2  ~ s(Cg)M,(Cg, c~ , )p(Cg, ) -2J~s(~)  p(Cg) 
'<r "6" r6' 

(24) 

Similarly, by substituting the asymptotic behavior (18) into Eq. (16), one 
obtains the equation satified by s(Cg), 

s(Cg, ) MUg,, ~o) = J - ~  M,(C~, ~o) (25) 

Hence, to obtain A, it is sufficient to calculate the s(Cg). But, due to 
(12), the solution s(Cg) of (25) can only be obtained up to a constant. It is 
easy to check, however, by using the expression (22) for the current, that 
the addition of the same constant to all the s(Cg) does not affect the value 
(24) of A. In the next section, we shall obtain an exact solution of (25) by 
using an extension of the matrix formalism. 

Remark  1. Discrete-time dynamics. One can also consider the 
ASEP under discrete-time dynamics, in which case at each time step one of 
the N +  1 bonds is randomly chosen and updated (where bond 0 is on the 
left of the first site and bond N is on the right of the Nth site). ~3) One can 
define a current j ~ d )  and diffusion constant A ~d~ in terms of the moments 
of Yr, the number of particles which have entered the system after T 
updates: 

( Y T )  ~ Jla)T 
(26) 

( Y T )  -- ( Y r )  2 --* A~alT 

In the case of discrete-time dynamics the evolution of the probabilities 
pr(Cg 1%), for example, is given by 

Pr+ lug ] ~go) = ~', Pr( ~ [ Cgl ) M~a)(cgl, %) (27) 

where M~a>= M~od~+ M] a> is the transition matrix for discrete time and is 
related to M = Mo + M~, the transition matrix for continuous time, by 

1 
M~oa)(c~, %) = 6~,,'eo + ~ - - ~  Mo(Cg, , ~o) 

1 
M]a)(cg~, %)= M~(Cg,, %) 

N + I  

(28) 
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Modifying the steps leading from (15)-(25) and using (28), one finds that 
the s(Cg) satisfy the same equation (25) as in the continuous-time case. This 
leads to the following expression for the discrete-time current and diffusion 
constant in terms of the continuous-time expressions: 

J j(,,3 = 
N + I  

Atd) Z ~ [  J ] 
N + I  

Remark 2. Equation (11) was obtained by decomposing the time 
interval [0, t + dr] into two subintervals [0, dt] and [dt, t + dt]. If instead 
it were decomposed into [0, t] and [t, t + dt], one would obtain 

d 
dt P'( Y' c.g 1%) = Y'. Mo( c6', c6") P,( Y, c-6" 1%) + M,( cg, cg,) pt( y _  1, ~ '  1%) 

~ ,  

and, as in ref. 22, an expression for A would be obtained in terms of the 
quantities r(Cr which appear in (18), 

A = J + 2  ~ M,(C,g, ~ ' )r (~ ' ) -2J ~ r(Cg) (29) 

Clearly, the result obtained for A must be the same. The r(Cg) would satisfy 
an inhomogeneous linear equation 

M(ff, 4 ' ) r (~ ' )  = J p ( ~ ) - ~ "  M,(~g, ~ ')  p(~')  
,~- rg, 

(30) 

The r(~g) are determined by this equation only up to the addition of a mul- 
tiple of PUg) that does not affect the value of ,4. For general 0t and fl we 
did not succeed in finding exact expressions for the rug), solution of (30). 
However, along the line 0~+fl=l ,  it can be checked that Eq. (30) is 
satisfied by 

" d P ( r g )  (31) r(~) = ~p ~ -  

3. SOLUTION FOR s(Cg) IN TERMS OF MATRICES 

In this section, we show that a solution for Eq. (25) that defines the 
s(Cg) can be found by using a matrix formulation that extends the technique 
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used to compute the stationary weights p(Cr Its general solution is of the 
following form: 

l N 
s(~r = - ~ <  Wl 1-I (v ,x+(1 -v,)  Y)IV> +const  

i = 1  

(32) 

with re--- 1 if site i is occupied and r~ = 0 if site i is empty, Z~ is given by 
(3), and the constant is arbitrary. The matrices X and Y and the vectors 
(W[ and IV) are given by 

X =  

/ C  0 0 0 

D E O 0 

0 D E O 
0 0 D E and 

/ C  

0 

0 
Y =  

0 

0 0 0 

D E O  

0 D E 
O O D 

(33) 

< wI = (0, (0~1, (0el, <0el .) and IV) = 

Ib'>) 
0 
0 (34) 

where the matrices D, E, and C and the vectors (ct[ and Ifl) satisfy the 
algebraic rules (2). 

Here X and Y are infinite-size matrices whose elements are themselves 
the infinite matrices D, E, and C. The ( ~  and IV) are vectors whose 
components are themselves vectors. X and Y can be seen as operators on 
a tensor product of two infinite-dimensional spaces; ( I4/] and [ V) are par- 
ticular elements of this tensor product space�9 The structure of the s(Cr is 
more complicated than that of p(Cr This complexity is also apparent in 
the algebra generated by ,t, Y, ( IV], and IV) (see Appendix B). 

The proof that the s(Cg) given by (32) do solve the linear equation (25) 
will use the following properties of the matrices .Y and Y and of the vectors 
(/4"1 and IV) (which are derived in Appendix B): 

1. For a l lpT>l  andq> /1  

X Y  p -  I ( X y - -  YX) Y q -  IX  = X p YqXW Y X  p Yq --  Y X  e -  1 Y q x - -  Y X  p Y q -  I X  

(35) 
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. 

~<Wl 

2. For a l lp1>l  a n d q / > l  

Y X P - ~ ( X Y -  YX) Yq-~ [ V ) = ( X -  Y) XP-JYq[V)  (36) 

3. For a l l p / > l  

f l r x  p - ' ( X -  Y) IV) = ( X -  Y) X p- '  l V) (37) 

4. For a l l p > / l  a n d q t > l  

< WI X p- ' ( X Y -  YX) r q - ' X =  < I4q XPY q- '( Y -  X) + (<~r C p+q, O, 0,...) 

(38) 

For all p >/1 

Y - X )  Y r - ~ X = (  W] YP-'( Y - X ) + ( ( e t l  CP-oc(e~[ CP+', O, O,...) 

(39) 

6. For a vector of the form ( (v  I, 0, 0,...) 

((vl, O, O,...) r = ( ( v l ,  O, O,. . .)x=((vl c, 0,0 .... 

and this is trivial when one looks at the matrices. 

(40) 

The first relation (35) of this algebra relates the system of size N with 
the system of size N -  1, as each term in the r.h.s, contains one factor less 
than the terms in the 1.h.s. This property plays a role similar to the equa- 
tion D E = D - b E  in (2). All the other properties are related to boundary 
effects. 

To prove that the expression (32) of s(Cg) solves Eq. (25), we shall 
write down explicitly the four different cases that can occur for simple types 
of configurations. A general proof for an arbitrary long configuration 
would follow exactly the same lines: all the terms arising from the displace- 
ment of a particle in the bulk of the lattice cancel out due to the first 
property (35), and there are only boundary terms left (i.e., a particle 
moving at the boundaries of the system). From these boundary terms, the 
properties (36)-(40) generate the r.h.s, of (25), by following exactly one of 
the four cases described below. 

We use here a more convenient notation: a configuration starting by 
p occupied sites, followed by q empty sites, then r occupied sites, and 
ending with t empty sites is denoted by lPOqlro '. 

1. For a configuration of the form lP0ql"01 with p + q + r + t = N ,  
one can show from (36), (38), and (40) that 
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- 2 s (  1POql rO') + S( 1 p - 10 lOq- I 1 "0') + S( 1POql r -  lO1 O, - l) 

1 
= Z----~ [ ( IV] x P Y q X T " - ' ( X Y  ' -  Y X Y  ' -1  ) IV> 

+ (  V4 X P - ' ( X Y  - YX)  Y q - ' x ~ Y  ' [V)  ] 

1 
= ~  [( ~ x P Y q - ' ( ) (  " -  Y )  X " - '  Y' I V) 

- 'w 

. 

+ (  IV] X s ' Y q - ' (  Y -  X) X ~ - ' Y  r IV)  

+ ( ( 0 q  C p+q, O, 0,...) X r - '  Y' IF ' ) ]  

1 =~--~ <~1 cN-I Ifl) = J  

For  a configuration of  the form 1POqlr with p + q + r = N, one can 
show from (37), (38), and (40) that 

- ( 1  +f l )  s(lPOql r) +s(1 P-  1010q- l 1 r) + f l s ( l P O q l  r -  10) = j  

3. For  a configuration of  the form 0Pl qo r with p + q + r = N, one can 
show from (36) and (39) that 

- -  (0~ + 1 ) S(0Pl qo r ) + r 1 0  p - I 1 q0 r)  + S ( 0 P l  q -  1 0 1 0  r - 1) = j _ 

4. For  a configuration of  the form OelqOq t with p + q + r + t = N ,  
one can show from (35), (37), (39), and (40) that 

- ( ~  + 1 + fl) s(0Pl q0"l t) + ~ (  l0 p - 11 q 0r l  t)  

+ s(0Pl q - '010 r -  l l ') + fls(OPl q0rl ' -  10) = J - -  0~ 

4. EXPRESSIONS OF THE DIFFUSION CONSTANT 

The diffusion constant A can now be rexpressed exactly as a sum of 
matrix elements, as it is just a linear combinat ion (24) of the sff#). In 
principle, analytical calculations are possible, but due to the complexity of  
the algebra (35)-(39) presented in the previous section, we could obtain 
simple closed expressions for A only in some particular cases (ct = fl = 1 and 
~+fl--- 1). 

However, with the help of the matrices, a significant reduction of the 
numerical calculation times has occurred: instead of times growing expo- 
nentially with the system size, the matrices provide an algorithm whose 
time increases algebraically with size. 
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0.5 

0 

0 

/ 
0.5 1 

Fig. 1. The phase diagram of the model in the ct-fl plane. The region ct> 1/2 and fl> 1/2 is 
the maximal current phase, whereas the region ~t < 1/2 and fl > = is the low-density phase and 
the region fl< 1/2 and = >fl is the high-density phase. The line a=fl  < I/2 is a first-order 
transition line. 

When the size of  the lattice goes to infinity, the system can undergo 
phase transitions on changing (2)'tl3-16) the values of  ct and ft. The phase 
diagram consists of  three phases (see Fig. 1): 

�9 For  ct/> 1/2 and fl/> 1/2 the system is in the maximal current phase: 
the current and the mean occupation of  a site do not depend on 
~, fl and take values J =  1/4 and p = 1/2, respectively. 

�9 For  0t< 1/2 and f l > ~  the system is in the low-density phase: 
J = ~ ( 1 - c t )  and p=c t .  

�9 For  f l <  1/2 and f l<0t  the system is in the high-density phase: 
J = f l ( 1  - / ? )  and p =  1 - f t .  

Along the first-order transition line (ct = fl < 1/2), the density profile is 
not  constant in space, but  increases linearly from ~ on the left to 1 - ~  on 
the right. Actually, this is an average over states of  the system that exhibit 
a microscopic shock (a sharp discontinuity in the density profile) situated 
at an arbitrary position. (2a) 

R e m a r k  3. It should be noticed that A is a symmetric function 
of  �9 and ft. In the ASEP, particles and holes play identical roles: holes are 
injected at the right-hand side rate fl, and they move with hard-core 
exclusion toward the left, where they exit with rate ~. The number  Y, of  
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0 

i i i i i / i  

N=2 

N=4 

N=8 

N=I6 

I I I I ',I = 
0.1 0.2 0.3 0.4 0.5 [~ 0.6 

Fig. 2. The diffusion constant A versus fl at fixed a = 0.7 for various system sizes. The dashed 
line represents the limit N--*oo given by A = f l ( 1 - f l ) 1 1 - 2 i l l  for f l < l / 2 .  For f l>  1/2, 
A vanishes in the thermodynamic limit. 

particles entering the system is also the number  of  holes leaving it. The 
fluctuations of  Y, are identical to the fluctuations of  the number  of  holes 
entering the system. Hence A(0q f l ) =  A(fl, o O. 

4.1. Numerical  Results 

Some typical curves of  A for many  values of  N and their limit as N 
goes to infinity are shown in Fig. 2 4 .  In each phase the limiting behavior  
of A can be deduced (in Section 4.3 we shall derive some of these expres- 
sions): 

�9 For  0c~> 1/2 and fl~> 1/2, one sees that  l i m N _ ~  A = 0 .  We shall 
show below that  A is t~(N-~/2). 

�9 For  ct< 1/2 and fl>0~, A ~ c t ( 1 - ~ ) ( 1 - 2 ~ ) ,  when N ~  or. 

�9 For  f l < I / 2  and f l<ct ,  by symmetry,  A ~ f l ( 1 - f l ) ( 1 - 2 f l ) ,  when 
N ~ .  

When crossing the line 0c = fl < 1/2, one observes from Fig. 3 that  the 
value of A changes rapidly. For  N going to infinity, this behavior  becomes 
a discontinuity in the graph of A. Numerically,  the diffusion constant  seems 
to fall to 2/3 of its value, i.e., 

A(~x = fl < �89 = 2o~(1 -- o0( 1 -- 2o0 (41) 
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0.12 i I ~ B I /  
& 0t=o.35 
0.10- N=8 N=l_z66 N=32 / - 

o,o 8 = 

0.0~ N = ~  

0.04 / /  

/ /  
0.02 / 

I I I I I 
0.1 0.2 0.3 0.4 0.5 0.6 

Fig. 3. The diffusion constant zf versus ,8 at fixed ct = 0.35. The results converge to zl = 
,8(1 -,8) I1 -2,81 for ,8<a and zl =a(l  - a ) I1  -2ctl for ,8>ct (dashed curve) except along the 
first-order transition line ~t =,8, where zJ =-~,8(1-,8)11-2,81 (represented by the horizontal 
line segment). 

In the maximal  current  phase the asymptot ic  recovers the fact that  for 
an infinite system the behavior  is subdiffusive (i.e., zl vanishes).  The 
(P(N- ' /2)  behavior  is consistent  with the z = 3/2 dynamical  exponent  in the 
K P Z  equat ion in (1 + 1) dimension.  122"25> On the other  hand,  in the high- 
density and low-density phases the (finite) asymptot ic  value of  zl is equal 
to the value obta ined  directly on an infinite system with a given density of 
particles. ~2L261 

0.15 

A 

0,1C 

0.05 

N=2 

i I t h " ~  i N= 6 4  1 
0,1 0,2 0,3 0.4 0.5 0.6 I~ 0.7 

Fig. 4. zJ versus ,8 along the first-order transition line ct =,8. The results converge for N---, oo 
to the dashed curve zl = 3,8(1 -,8) I1 -2,81 for ,8< 1/2 and to 0 for ,8> 1/2. 
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The factor 2/3 that appears in (41) on the line ~ = p  < 1/2 can be 
understood from the following simplified model: consider the situation 
where 0~ (=f l )  tends to zero (~ ~ l/N); in such a case the only configura- 
tions that have a nonnegligible probability of appearing are of the type 
0000...0011111...11, i.e., a shock between a region of low density and a 
region of high density. Very occasionally a particle enters the system and 
after this happens the particle proceeds toward the position of the shock. 
The shock, on the arrival of the particle, moves one step to the left. 
Similarly, after a particle has been removed from the system, the shock 
moves one step to the right. Thus, counting the number of particles that 
enter the system is equivalent to counting the number of steps made 
toward the left by a random walker (who is situated at the position of the 
shock). This random walker moves to the right with probability 0~ dt and 
to the left with probability ~ dt and there are reflecting boundaries at sites 
0 and N + 1. The solution of this random walk problem can be obtained 
by applying the formalism developed in Section 2. Here we only have N 
configurations cg labeled by n, the position of the random walker. The 
equations for p(Cg), (13), and s(Cg), (25), can easily be solved to give 
p(Cg) = l/N, s ( C g)=n- -n (n -  1)/(2N). Equation (24) leads to 

A c t (N-  1 ) ( 2 N -  1 ) --. 2ct 
3N 2 3 

This problem is fully equivalent to the problem of two particles on a ring 
which was solved in ref. 22 and the factor 2/3 already obtained. 

For general a = f l <  1/2, if one assumes that the shock performs a 
random walk with probability ~ /2  dt of moving to the right and proba- 
bility ~ /2  dt of moving to the left and if we relate Y, to the number of left 
steps performed by the shock, denoted by x, multiplied by the difference 
between the densities to the right of the shock and to the left of shock, i.e., 
Y,= (1 - 2~)x, then 

< y2> _ < y,> 2 = (i  - 2~) 2 [ < x2> - < x> 2] (42) 

As before, due to the reflecting boundaries, <x 2) - < x )  2 is given by 
(2/3)(~/2)t,  so that 

< y~> _ < y,>2 __, (l --2oc) 2 �89 (43) 

Our result (I) would then imply 

_@ = 2o~( 1 -oc) 

I - 2 ~  
(44) 

822/79/5-6-4 
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This is consistent with a recent work of Ferrari and Fontes, (27) who proved 
that in an infinite system with no boundaries the motion of a shock con- 
verges in distribution to Brownian motion with diffusion constant ~ given 
in the present case of densities 0t to the left and 1 -  0c to the right by (44). 

Krug and Tang (28) recently reinterpreted the exact results for the 
ASEP with open boundaries in terms of a directed polymer in a random 
medium confined between two walls. The current in the ASEP measures 
the mean energy per unit length of a directed polymer of infinite length and 
the diffusion constant measures the variance of the energy per unit length. 
The low- and high-density phases correspond to bound states of the 
polymer at the walls, whereas the maximal current phase corresponds to 
a polymer free to move. Since in the bound state the directed polymer 
experiences a one-dimensional disorder, it is not surprising to find in that 
case a nonzero diffusion constant. 

4.2. Exact Expressions for /1 

The diffusion constant A can be expressed in terms of matrix elements, 
by substituting in (24) the expression of the s(Cr We could explicitly per- 
form this sum in two particular cases, 0c--1 and 0 t+f l=  1, which we 
describe below. The exact formulas obtained will enable us to confirm the 
asymptotic behavior of A in the limit of infinite lattice size in each region 
of the phase diagram and to support the conclusions drawn from the 
numerical data. 

In order to derive an explicit expression for the diffusion constant one 
has to consider the following sums [see (24)]: 

pug) s(~g) 

_ 1~, ~.< (a[ z , D + ( 1 - r i )  E [fl) 

x ( W ]  I I  r ; X + ( 1 - ~ ; ) Y  IV) (45) 
i = l  

y" M,(~, ~") p(~') s(~') 

- Z 2 E ( a l E  [-] r i D + ( 1 - r , ) E  Ifl) 
{ri~ 1.0;2 ~<i~ N} i = 2  

x<WlX ]-I "c;X+(1-ri) Y IV) (46) 
i = 2  
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If one introduces G given by 

G = D | 1 7 4  Y (47) 

where the notation A | B simply means the matrix A with each of its 
elements replaced by the original element multiplied by matrix B, then the 
quantities (45) and (46) may be written as 

1 
p(~e) s(~e) = -z-~u <~1 | < Wl G N 1,8) @l V> (48) 

~" M,(C~, c~,) p(Cg,) s(C~) = 1 -Z--~N [<0~[ | < W] X] G N-t  I/~> |  (49) 
r cgr 

Again the notation <al | <bl simply means the vector <al with each of its 
elements replaced by the original element multiplied by vector <bl. Thus 
the computation of the diffusion constant amounts to calculating certain 
elements (48) and (49) of powers of G, which may be considered as a matrix 
whose elements are matrices whose elements are matrices. In Appendix C 
we show how explicit expressions for such matrix elements may be 
calculated in two cases, a = f l =  1 and a + f l =  1. Let us state here the 
results. 

�9 For c o + r =  1 

where J = a( 1 - a). 

A = J  1 - 2 J  k! ( k +  1)! 

�9 For a = l ,  r =  1 

3(4N+ l)! [N! (N+2)!]  2 
= (51) 

2[(2N+ 1)!]3(2N+ 3)! 

4.3. Asymptotic Limits of Exact Expressions 

Here we shall deduce the asymptotic limits of A in the various phases 
by considering the specific cases where we obtained exact expressions for 
the diffusion constant: 

�9 For c t+ f l=  1, c~:fl  

--, p ( l  - ~ )  I1 - 2ill (52) 
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�9 For c t+ f l=  1, c t = f l =  1/2 

1 
d ~- 4n 112NII2 (53) 

�9 For 0c= I, f l=  I 

3(2n) 1/2 
A - 64N~/~ (54) 

Expressions (52) and (53) are the asymptotics along the line of param- 
eter values where the steady state factorizes. This line traverses both the 
high-density and low-density phases, in which case (52) is the asymptotic, 
and also the point in the phase diagram where the maximal current phase 
joins the high-density and low-density phases, in which case (53) is the 
asymptotic. Both (52) and (53) are consistent with our numerical results. 
They can be obtained by using the asymptotic forms of the sum involved 
in (50). 

For J <  1/4 

~ l (2k)! 

k=0 k ! ( k +  1)! 

For J =  1/4 

N- I (2k)! 

Y" k~ tk + 1)! 
k = O  

j k _  1 --(1 - -4J)  1/2 (4J) N 1 
2J 7gl/2N3/2 1- -4J  + "" (55) 

2 1 
j k  = 2 7~1/2N1/2 ]- 41zl/2N3/2 -}- .." (56) 

Expression (54) is for one point within the maximal current phase and 
is easy to obtain from (51) by using Stirling's formula. 

We see from (53)-(54) that in and on the boundaries of the high- 
density phase the diffusion constant is (.9(N-I/2). In principle the general 
formula (58) to be given below should allow one to check this fact and to 
calculate the prefactor of N-1/2 in the whole of the maximal current phase. 

Remark 4. For general values of ~ and fl we find that 

y '  p(Cg) s(C~) 

N-1 (2n)! (c t [C jv . . . .  l i f t )  
= - -  ( c t [ C " - ' D C N - " l f l )  + ~ ( N - - n )  n ! ( n + l ) !  (0t[ cN[f l )  

,,=l ( ~ 1 C U l P )  ,,=0 

~ (ctl C N - "  Ifl) C,,_IDCN CNDC,,_ -,,=, ~--~1 ~---~-p~ I-<=1 IP>-<~I 'IP> (57) 
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and 

A = 
<ocl c":-' ID> <~1 c ' - '  I#> ~ '  [<ocl C " - ' D C  N - "  ID> 

<,~1CNI,8> <~1CNiP> z.,[,,:, <~1C"1,8> 

<~1C"-'DCV-'-" IP>] 
<~1CN--I IP> 

~ '  (2n)' [ ( ~ l  CN . . . .  " I/~) 
+ n!(n+ 1)! ( N - n - - l )  CU 

, ,=o <,~1 IP> 

_ ( N _ n +  l) <~14 ~1Cu I/~>C:"-' IB> (~I_<.~_.~T~) CN .... ' IB> ] 

+2 <~1 c" - '  Ip> ~ <,~1 c N-" I/b 
<oq c,':lp> ~ ,,:, 

x [<~1C"-'DCN I/b -<ocl CNDC "- '  I/b] 
1 N - - l  

<~l c N I/~)" ~ <o~l c N-" IP) 

x[<~l C"- 'DC"- '  I/~>-<~1CN-'DC "- '  I/~>] 
l N - - 1  

<~1 c ~ I#>" ~ <~1 c N . . . .  ' I#> 

x [<=1C"-'DC NIP> -<,~1CN-'DC " I~>] (58) 

where the matrix elements involved are given by expressions derived in 
ref. 14: 

~ p  
(59) 

" - )  (2p) !  
(~I C"DC" [fl) = ~, p! (P+ I)! 

p=O 
(~1 c "+"'-p IP) +R,, (~1C"' [~) 

(60) 

where 

(~) ~ p ( 2 n - l - p ) !  1 
R,, = n! ( n - p ) !  ill,+] 

~ D  Ro fl 

for n/> 1 
(61) 
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The expressions (57) and (58) can be obtained using ideas similar to those 
employed in the proof for the case ~ = f l =  1, outlined in Appendix C. 
However, the derivation for the general case is far more complicated and 
we do not feel that it would at all be instructive to present it here. We 
checked (57) and (58) on the computer for a number of choices of ~, fl, and 
N and they were in perfect agreement with a direct numerical calculation 
of the two sums (45) and (46). 

5. RELATION WITH CORRELATION FUNCTIONS 

In this section, we explain how the quantities s(Cg) and A are related 
to some non-equal-time correlation functions of the ASEP. This will shed 
some light on the physical meaning of the s(rr and show that matrix 
techniques can be useful in calculating more general properties than equal- 
time correlation functions. 

Between times t and t + dt, the number Y, of particles which have 
entered the system since t = 0 increases by one unit with probability ~ dt if 
the first site of the lattice is empty. If one decomposes the time interval 
[0, t] into t/dt infinitesimal intervals of duration dt, Y, can be written as 

t / ~  

Y ,=  ~ ak (62) 
k = l  

where a k is a random variable that takes two values, 0 or 1: ak = 1 if a par- 
ticle has entered the system in the kth small time interval dt {this occurs 
with probability 0~[ 1 - r ~ ( k  dt)] dt}; a k - -0  if no particle has entered in the 
time interval { this occurs with probability 1 -  ot[ 1 - r  ~(k dt) ] dt}. 

One can then derive some new expressions for ( Y , [ % ) ,  the average 
of Y, starting from a specific configuration fro, and for ( Y , ) 2  [ when the 
initial configuration is not specified, it means that an average is taken over 
the initial configurations with their stationary weights p(~g)]. Taking 
averages of (62) and going to the continuous limit, one obtains 

t/dt t/dt 

< Y, I%> = Y'. (a~ I%)  -- Z ~([1 -r,(kdt)] I%) dt 
k = l  k = l  

=or [ l - ( z a ( t ' ) [ % ) ] d t '  (63) 

The system reaches a steady-state when time goes to infinity, so 

( r l ( t )  I ~o) --* ( r l )  (64) 
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where < z, > is the probability of the first site being occupied in the stationary 
state. Formula (63) can then be rewritten as 

< Y, 1%> =zt(l - <r ,>) t  +zt [<v,>-<r,( t ' ) l%>]dt '  (65) 

From Section 1, we know that the asymptotic behavior of < Y, 1%> 
can also be deduced from that of q,(~ 1%) just by summing (18) over ~g: 

< Y, 1%> - Jt --, s(%) + ~ r(Cg) (66) 
qr 

If one averages (66) with respect to the stationary probabilities p(%) and 
uses the fact (8) that < Y,> = Jt, one obtains the following relation between 
the quantities s(%) and r(Cr 

r(Cg) + ~ s(%) p(Cr = 0 (67) 

One can then rewrite (66) in the following form, which uses only the quan- 
tities s(%): 

< y, [ %> _jt__,s(%)_y's(Cg) p(Cr (68) 

Comparison of (65) with (68) provides an integral expression for s(%): 

0~ [ < r , > -  <Vl(t) 1%>] dt=s(%)-~s(Cr (69) 

The left-hand side of this equation represents the time integral of a non- 
equal-time correlation function and we have shown that for any initial 
configuration %, the right-hand side can be written as matrix elements. 
Roughly speaking, one can say that the quantities s(%) measure the relaxa- 
tion of the current to its equilibrium value. 

One can derive an expression for the fluctuations of Y, in a similar 
fashion, by using the same discretization as before (2). Briefly, one has 

< Y,~> - < Y,>~ 
~(,/., ~2. /,/~, =Lo# )-/L 
t/at 

= Y'. (<a2k>--<ak>2)+ZZ Z <akaj>--<ak>(aj> 
k = l  k j<k 
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1 l l '  

=o~;: dt' ( 1 - r l ( t ' , )  +2~2 fl dt';i dt" ( [ 1 - r i ( t " , ] [ l  - z l ( t ' ) ]  ) 

- ( 1 - r l ( t " ) ) (  1 - r l ( t ' )  ) 

= ~  ( l - r l ( t ' ) )  d t ' + 2 ~  2 dt' dt" (rl(t")r~(O))-(rl(t"))(rdO)) 

(70) 

where we have used the time translation invariance of the correlation func- 
tions. The expression of A in terms of non-equal-time correlation functions 
is finally deduced: 

a = lim ( y 2 )  _ ( yt)2 
f ~ o o  t 

=J+20~ 2 [ ( r l ( t )  r t (0) )  - ( r l )  2] dt (71) 

Remark 5. Instead of counting the number Y, of particles that have 
entered the system since t = 0, we could have marked the ith bond of the 
lattice (between sites i and i +  1) and looked at ytij ( i=  1 ..... N - 1 ) ,  the 
number of particles that have passed through that bond during time t. We 
could also have studied ytNI, the number of particles having left the system 
during time t. 

The reasoning is readily modified for each case: the transition matrix 
M has to be split into two parts Mo and Mr: but now M o ( ~ ,  ego) dt is the 
probability of going from ~o to cg I without a particle passing through bond 
i and M1(~1, Cgo) dt is the probability of going from c~ o to ~'~ by a particle 
passing through bond i, in a time interval dt. 

At any time all the Yt,;~ differ by an integer less than N. Their fluctua- 
tions thus have the same rate of growth with time: the diffusion constant 
computed for any yi/~ is identical to A. 

All the relations of this section derived for Y will remain true for y . I  
once the expression ~ [ 1 - r ~ ( t ) ]  is replaced by ri(t)[1-ri+l(t)], for 
i =  1 ..... N - l ,  and by flrN(t) for yI, N). For instance, we obtain the 
following formulas for A: 

A = J + 2  ; :  dt ( r , ( t ) [ 1 - r , + l ( t ) ] [ 1 - r , + l ( 0 ) ]  r , (0))  - ( [ 1 - r , + l ] r , )  2 

= J+2f12 ; :  ' ( r u ( t )  rN(0)) - - ( r u )  2 
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For each i, the functions s;(~') are defined as in Section 1 and they 
are solutions of the same inhomogeneous equation as (25), but with the 
relevant M~ (as described above) 

s,( c~, ) M(C~a, c~o) = J -  ~ Ml(Cg,, %) 

A solution of this equation is found by setting 

s~(~) = s(~) + n;(~) 

where n (~)  is the number of occupied sites in configuration c~ between site 
1 and site i (inclusive). Thus our approach should allow one to compute 
correlation functions of the following type: 

s,(C~o)--~p(C~)s,(~g)= (%[1 --r ,+ l] ) - - ( r , ( t ) [  1 -  r,.+,(t)] logo) at 
~K 

6. C O N C L U S I O N  

In this paper we have shown that the fluctuations of the current through 
a bond of a finite system with open boundary conditions can be calculated 
exactly. Our approach required the solution of an inhomogeneous master 
Eq. (25). 

We have shown that this inhomogeneous master equation can be 
solved using a generalization of the matrix approach which had been 
developed to describe the steady-state. As the generalization of the matrix 
approach to the present case is rather complicated, we have shown how to 
perform the last sum (24), which yields the diffusion constant, only in some 
particular cases, (50) and (51). For the general case we present (58) 
without proof. 

Our result shows that the diffusion constant zi is singular when one 
crosses the phase boundaries. In particular, along the first-order transition 
line, it is discontinuous with a drop to 2/3 of its value. Inside the low- and 
the high-density phases, its expression in the thermodynamic limit is in 
agreement with the recent results of Ferrari and Fon tes .  (21'27) 

Our hope in calculating exactly this diffusion constant was to try and 
better understand the non-equal-time steady-state properties of the asym- 
metric exclusion model. Indeed, the diffusion constants calculated here and 
in ref. 22 can be thought of as the simplest non-equal-time steady-state 
quantities. Unfortunately, the solution we have obtained is too complicated 
to be generalized in its present form to calculate other non-equal-time 
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steady-state properties. So perhaps to make further progress on the non- 
equal-time properties of the asymmetric exclusion model, it would first be 
better to look for a simpler derivation of the results obtained in the present 
work. 

APPENDIX A 

In this appendix we obtain the asymptotic behavior (17), (18) of 
p,(~g Ic4o) and q,(C.g 1 ego)- This gives explicit expressions of the s(.~) and 
r(Cg) in terms of the eigenvectors and eigenvalues of M. For simplicity, we 
will assume that the matrix M is diagonalizable (the nondiagonalizable 
case can also be treated, but would require more complicated notation). 
The matrix M(~', cg,) has 2 N eigenvalues ~-l---, '~'2 N, one of which is zero, 
with all the others less than 0, 

2 t = 0  and 2 , < 0  for n>~2 (AI) 

Let us denote by Z,, and ~k,, the normalized right and left eigenvectors of the 
matrix M(Cg, 4'): 

2,,Z.(~r = ~'. M(C~, ~' )  Z,,(tr (A2) 

2.,, ~b,,(~') = ~ ~b,,(~) M(~, ~ ' )  (A3) 

These eigenvectors are normalized to have 

~. ~b,,(~) X,,.(~) = J.,,,, (A4) 

and they form a complete set so that 

t !  

The equations (15) and (16) governing the evolution of p,(~ I ~go) and 
q,(C~ I ~o) can formally be solved. One finds, by taking into account the 
initial condition po(~g 1%o)= J~e.,~o, 

P,((~ I ~o) = e~'( c~, ~o) (A6) 

Hence, by projecting on the eigenvectors, one obtains 

P,(~ 1%)= ~2'.(~) e '~"' ~',,(~o) (A7) 
n 
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Similarly, after inserting p, = exp Mt  into (16) and taking into account the 
initial condition qo = 0, one has 

f2 q,(Cg 1%) - -  Y, dr p,(~ I ~e") Ml(C~ ", c~,) Pt-r( c'~' 1%) (A8) 
ra,- ~6,, 

which can be rewritten as 

f2 q,(~' l%)-- ~ ~ drx . (~ ) ea" r~ ' . (~" )M, (~" ,  ~')  
~ b ~ ' ~  ' ,, �9 

If one defines 

one finds that 

X,,,(cg ') e ~"'~'- r~ ~b,,,( %) 

(A9) 

mt(n,n')= ~ ~k,,(~")Ml(~",~')X,,,(c# ') (A10) 

Z,(c~) = p(Cg) (AI4) 

i f , (%)=  1 (A15) 

J=ml (1 ,  1) (A16) 

following identifications: 

q,(C~ 1%) = ~. drx,,(Cg) e~"rml(n,n')e~'l'-~)~b,,,(Cgo) (All )  
n,l l" 

In the long-time limit, as all the 2. but 2j are strictly negative, the 
expected asymptotic behavior is obtained: 

p,(~e 1%)--, Z,(~e) if,(%) (A12) 

In expression (All) ,  the factor, ~d rexp(2 . , r )  e x p [ 2 . ( t - r ) ]  goes 
exponentially to zero if both n and n' are different from I; it goes to the 
constant - 1/).. i f n ' =  1 and to -1 /2 . ,  if n =  1; it is equal to t i f n = n ' =  1. 
From this we deduce the asymptotic behavior: 

qt(C~ I ~ o ) ~  tXl(cg) ml(1, 1) ~',(~o)--Z,(~g) ~ m,(1, n ' _  ) ~,,,,(C~o) 
. '  > 1 '~n' 

-- ~ Z,,(~) m'(~n'-~]O ~J,(C#o) (A13) 
n >  l % 

and we recover the expected asymptotic behavior (17), (18) by making the 
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r ( C ) = -  ~ X,,(<#) m'(n' 1___~) 
n > 1 ~n 

ml( 1, 1l) qJ,,(~o) 
�9 ( ~ o ) = -  Z ;,,------7-- 

n >  1 

Finally, by using (24), we may express .4 as 

,d=mt(1,  1 ) - 2  ~. ml(1,n)mt(n, 1) 

tl > I ~)~la 

(A17) 

(AI8) 

(A19) 

APPENDIX B 

In this appendix, we shall prove the algebraic properties (35)-(39) 
satisfied by the matrices X and Y and the vectors (W[ and iV). We use 
the notation 

<11 <vl-=(<v[, O, O, 0,...) 

Also, when we use a lowercase letter for an operator, it means that it acts 
on the second part of the vector. Thus, we have, for example, 

<11 <vl c=(<v l  C, O, O, 0,...) 

Equivalently, one can write 

C =  

tC 0 0 0 .' 

0 C 0 0 

0 0 C 0 

0 0 0 C 

(B1) 

(B2) 

Preliminary Results 

If one defines the operator r by 

/0 0 

l - 1  

0 0 

~= o o 

0 0 .\ 

0 0 

0 0 

0 0 
(B3) 
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It is easy to prove the following from (33): 

1. We have 

2. We have 

859 

~ z =  _ ~  (B4) 

X Y -  YX" =- c~h = ~hc = d~h + ~ e  = ~ d  + e~h 

3. We also have 

(B5) 

X"YP - Y P X  = d ~  YP - 1X  ( B 8 )  

X P Y  - Y X  p = Y X  p -  lqJe (B9) 

Proof of (B8) and (B9): the case p = 1 of (B8)-(B9) is a simple conse- 
quence of (B5)-(B7) and of the fact that d e = c .  One can then prove (B8) 
by recursion: assume that it is true for p -  1 

X y p - i  _ y p -  I X :  d~k YP - " X  

Then one can write 

X Y  p --  Y P X =  ( X Y  p -  1 - -  y p  - IX" ) y +  y ? -  l ( x - y _  Y X )  

= d~ll YP - 2 x - y  + y p  - l c~ I 

This can be written, using (B5), as 

X Y  p --  Y : X - =  d~h YP - ' X +  d ~  Y P -  2~hc + Y P -  '~hc 

which reduces to (B8) when using (B4) and (B7). The proof of (B9) is 
almost identical: One writes 

X P Y  - Y X P = X ( X t ' - I Y  - Y X P - I ) + ( X Y  - Y X )  X p - '  

Then, assuming that (B9) is true up to p -  l, one finds 

X - p y _ _  yX"p = X " y x p - 2 ~ l e  + c~l/X" p - L _~ y x p -  l ~ e  

the fact that C = D E  = D + E. 

4. For a l l p> / 1  

~hX = e~b = ~be (B6) 

Y~, = d~,  = g ,d  (B7) 

Relations (B4)-(B7) are direct consequences of the definition of ~ and of 
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5. The action of Y on a vector of the form of [ W)  gives a vector of 

Y 0 = 

the same form, i.e., 

Moreover, from (33) and (B4), one can easily show that 

and 

6. Similarly, 

((vl, (wl, (wl, (wl,...)x= ((v'l, (wl c, (wl C, (wl c,...) 

(BlO) 

(Bl l )  

Proofs of (35) - (39)  

Proof o f  (35). Using (B5), one has 

YX p-  I (XY--  YX) Yq - IX=  YX p-  l(d~k + ~,e) Yq-  IX  

Then the proof follows using (B8) and (B9). 

Proof o f  (36). Using (B5), one obtains 

Y X  p -  I ( X y -  YX) y q - I  iV  ) = y X  p -  l(dl, ~ _t_ ~ke) Y q -  1 [ V> 

Then, using (B9), one finds 

Y X  p -  I ( X y - -  YX) r q -  1 ]V> 

= E YXP-I  d~ I Y q - l +  x P Y q -  Y X P Y q - l ]  IV> 

and the proof of (36) follows from (B10) and (Bll) ,  which imply that 

y x p - , [ y + d ~ _ X ]  y q - I  IV > = 0  

( ( v l , ( w l , ( w l , ( w l , . . . ) ( X - Y + e ~ b ) = ( ( w l C ,  O,O,...) (B12) 
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Proof  o f  (37) .  The case p =  1 is easy to check from (33), (34), 
and (2): 

p Y ( x -  }3 IV)  = ( x -  Y)IV) 

Assuming that (37) is true up to p - 1 ,  let us now prove (37) for p. One 
has 

~( YXp - Y X . -  ' Y) I v )  

=p(  Y X -  X Y ) ( X . - ' -  x ~ - ' - r 3  IV> + x ( x -  r )  x p - ' -  Iv> 

Then, using (B5), one obtains 

B Y X ~ - ' ( x -  r ) I V )  = - p c ~ ( X # - ' - x p - Z r )  IV) + ( x ~ -  x Y x ~ - ' - )  IV)  

which after (B5) is applied again becomes 

P Y x p - l ( x  - Y ) I V )  = c ~ X ~ - 2 ( p ( r - x )  - I)IV) +(x~-  r x , ' - ' )  IV)  

which yields, using (Bl l )  and (2), 

p YXp - ' ( x  - Y) I v )  = cq, Xp - 2( _ q, _ 1 ) I v )  + ( x .  - r x p  - ' ) I v )  

The proof then follows from (B6) and (B4). 

Proof of (38). Using (B5), one has 

( W[ .e~ p- |(XY-- YX) yq- lz~ = ( W[ .r~p-'(de --}= e~l) Yq-,~r 

Then, using (B8), one finds 

( W1 X P - ' ( X Y -  YX) Y q - ' X  

= ( WI XP- I (XY  q -  YqX+e~Yq-IX)  

=< wl [ x ~ r ~ - ' ( r - x ) +  x ~ - ' ( x -  r + e ~ , )  r ~ - ' x ]  

which, using (B12) and (40), gives the proof of (38). 

Proof of  (39). Let us start with p = 1. Using (B12), one has 

oL< W1 ( Y -  x )  x = ~x< w{ er  - or( < o~ l c 2, o, 0,... ) 

which, using (B6), (2), and (33), becomes 

a<W[ ( Y - X ) X = < W I  e~O-~((~l C2, O, 0,...) 
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Using (B12) again, one gets 

~( wI ( r -  x ) x =  ( wI ( Y -  x)  + ((~1 c -  ~(~l c 2, 0,...) 

and this gives the proof for p = I. To prove (39) for general p, one can 
write 

~< W] ( Y - X )  r"- 'X=oc(  wI ( Y - X )  y p - 2 ( y x - x Y )  

+ ~( WI ( Y -  X) YP-  2XY 

Assuming that (39) is true for p -  1, then using (B5) and (40), one finds 

~< wI ( Y -  x )  r " -  ' x =  - ~< wI ( Y -  X) Yp-2c~ + ( WI YP-2( y _  X) Y 

+ ( l l  (~1 c p - ~ ( l l  (~I c p+' 

and this proves (39) for p using (B5) and the fact that 

-oc( WI ( Y -  X) Yp- 2cr = ( IV] qJdP-Zc = ( WI r" -  2cq, 

which is a consequence of (B7), (B.12), (B4), (40), and (2). 

APPENDIX C. EXPLICIT CALCULATIONS OF DIFFUSION 
CONSTANT 

In this appendix we outline the ways in which we derived explicit 
expressions for the diffusion constant. First we recall that in order to 
obtain the diffusion constant one needs to compute [cf. (48), (49)] 

1 
Z p ( ~ )  s(~) = -~-_~ <0q | < wI G ~ I/~> | (c1) 
'6' 

1 
M~(~,~g')p(Cg')s(~) = - ~  [(cG | ( W] X] G N-t  I~> |  

"6', ' (J '  
(C2) 

We first introduce the notation 
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/ o \  

\ - /  

and a similar notation for the bra vectors, so that 

I/b | I v) = I/b l1 ) IB> (c4) 

<al|  Y. <~1 (il (~1 (c5) 
i = 2  

Due to the form of G = D | 1 7 4  Y [see Eq. (33)] one has 

G[Iu) I1 ) Iw) ]  = D  Iv> X[ I1 ) Iw) ]  + E  Iv) Y[ll> Iw>] 

= f l u )  I1) Clw)+Olv> 12) Olw> (C6) 

where Iv), [w) are arbitrary vectors. Repeated use of (C6) implies 

G"[Iv) I15 Iw)] 

=C"[v)  [1) C"[w)+ ~, G ...... [DC "-n[v) [2) DC "-~[w)] (C7) 
: 1 = 1  

Also, due to the form of G one has 

E<vl <ll <wl] G " =  <vl c"'<11 <wl c" (c8) 
Thus, using (C4), (C5), (C7), and (C8), one may rewrite (C1) and (C2) as 

1 N 
~ p ( f f ) s ( : ~ ) = -  (HI ~ G N - "  ~, ~ ,,=, IL,,) (C9) 

M,(~, ~') p(Cg,) s(~g) 
e6,~G' 

1 [ ~, ] 
=-Z--~u ( cc l ( l l (~ lD+  (oq<il(oqC GN-'[lfl) l l ) l f l)]  

i = 2  

N - - I  
= <~1 c N - '  I b ' ) < ~ l D C  N - '  IP) 1 (K I  Y'. G N - ' - "  IL , , )  

z~ z~, , , ~ ,  

(ClO) 

822/79/5-6-5 
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where IL.>, <HI, and <KI are defined as 

IL,,) =DC"-' IP> 12) DC"-' [fl) (Cl l )  

(HI = ~ (~1 (il (~1 (C12) 
i = 2  

(KI = ~ <~1 (il <~1 c (C13) 
i = 2  

The action of G on Ix) lY) Iz) for y >/2 obeys the following recursion [see 
(33)]: 

a"  Ix)12> Iz) 

= G " - ] [ O  Ix) 12) E [z) + D Ix) 13) O [z) + E Ix) 12) D [z) ] 

G m Ix> lY)Iz)  

=G"- '[O lx) ly) E lz) + O lx) iy+ l ) D lz) 

+Elx)  ly) D l z ) + g l x ) l y - 1 ) E l z ) ]  for y>_-3  (C14) 

C1. Calculations for o=13=  1 

For the case ct = fl = 1 we were able to evaluate the matrix elements of G m 
required in the calculation of Y~e p(Cg) s(~) and Z~6.~6, MI( c~, ~ ')  P(~') s(cg) 
by choosing to work in a particular representation of the matrices, the 
bidiagonal choicet]4~: 

D= ~ (Ix><xl+lx><x+ll); E= ~. (Ix>(xl+lx+l><xl) (C15) 
X = [  X = I  

(~l = ( l l ;  Ifl) =11) (C16) 

We now list some some convenient properties of the matrices in this 
representations which will be useful in the calculations that follow: First we 
have 

( I [ E = ( I [ ;  D I 1 ) = ] I )  (C17) 

( E - 1 ) l x ) = ] x + l ) ;  ( x l ( D - 1 ) = ( x + l ]  for x > O  (C18) 
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which are direct consequences of the definitions (C15). A useful identity is 

i 

C - "  I 1 > ( 1 1 C " - '  
t i l l  

i 

= ~ c " - '  I 1 > ( 1 1 C ' - " = D C ' - C i D = C E - E C  ' (C19) 
n =  1 

The first and last equalities in (C19) are trivial consequences of relabeling 
the sum and that C = D + E, respectively. That the middle equality is true 
for i = 1 is due to the fact that 

DC-- CD = D E - E D  = I1>( 11 (C20) 

which can be checked directly from (C15), and the case of general i can 
easily be proved by induction. Equation (C20) may also be written as 

E ( D - 1 ) = D - [ I > ( I [  and (E - -1 )D=E- - [ I>( l l  (C21) 

The matrix elements of powers of C in this representation are given by 
[ref. 14, Eq. (35)] 

(Yl cm IX> = m + y - - x / - - \ m + y + x /  

and from this formula one can check that 

( l l C " l x + l + z > = ( x + l l C " l z + l > - ( x l C ' l z >  (C23) 

The choice of matrices (C15) also makes the particle-hole symmetry more 
apparent since D, E are transposes of each other. One has, for example, 

<x[ C"'EC" lY> = (Yl C"DC" Ix> (C24) 

(x l  CmE(D-E) C" lY) = (Yl C " ( E - D ) D C "  Ix> (C25) 

the first of which implies 

N N N 
Z <11 CN-"EC "- '  I1> = Z <ll CN-"DC "- '  I1> =-y<l 

n =  I n =  I 

and the second that 

c u l l >  (C26) 

< II CN.E(D-E) C u l1 > 

=�89 C:~[E(D-E)+(E--D)D] C # II> 

= 2 ( 1 1 C  2N+l I 1 ) - ~ < l l  C u l l > 2 - � 8 9  C 2 N + 2  II> 

where we have used C2=DD+EE+ED+DE,  (C20), and DE= C. 

(C27) 
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C a l c u l a t i o n  for  {C9)  for  o = 1 ] = 1 .  The matrix elements 
<HI G" Ix> lY> Iz> for y~>2 can be explicitly computed: 

<HI G" Ix> [y> ]z> 

=<11 cm Ix>< II C m Iz> + ( l l  C" Ix+ y + z - l > < l l  C" l y - l >  

- <11C" l y + z -  l><l l  C"' I x + y -  1> (C28) 

Equation (C28) may be verified by first checking that the recursion (C14) 
is satisfied. This can be done by noting that when any of x = 0, y = 1, z = 0 
holds, the r.h.s, of (C28) vanished. One then checks that when x > 0, y > 2, 
and z > 0 each of the three terms on the r.h.s, satisfies the recursion (14) 
separately and that when x > 0, y = 2, and z > 0 the three terms together 
satisfy the recursion (14). One also has to satisfy the initial conditions 
(m = 0) which are dictated by the vector <HI, 

( n l l x )  l y > l z > - -  l l lx>  ~ < i l l y > < l l l z > = 6 L x ( 1 - 6 , , , ) ~ l , ~  (C29) 
i = 2  

which agrees with setting m = 0 in (C28). When (C28) is inserted into (C9) 
one obtains 

~ P(cg) s(eg) = ---~T. ,r [<11C N-" Ix><ll C u - "  Iz> 
"6- = x = l  z = l  

+ < l l  C ~ - "  Ix+ 1 + z > < l [  C N-' '  II> 

- < 1 1 C  N-" Ix+ 1>(11C N-'' Ix+ 1>] 

x ( x [  D C ' - '  II><:l DC"-'  II> (C30) 

In order to perform the sums over x, z one rewrites the second term in the 
square brackets by using (C23), then, using (C18), the particle-hole sym- 
metry <Yl C'E  Ix> = <xl DC" lY), and the basic fact Zx Ix><xl = 1, one 
obtains 

y' p(~e) s(~) 
(g 

1 u 
- Z 2  )-', {<ll CN-"DC "-111> =-- < l[ C N - " ( E - 1 ) D C  "-~ II>'- 

n ~  I 

+<11 c N-" II><l[ C"-'E[ ( D - 1 )  CN-"(E--1)--C N- ']  DC"- '  11>} 

(c31 ) 



Exact Diffusion Constant of Asymmetric Exclusion Model 8 6 7  

Expression (C31) can be simplified by using (C21) and (C24), 

1 N 
EP(cr162 = --~T~ )-'. {<11 c N - " D C  " - I  I1> 2 
~# n :  1 

- < l l  CAr-"EC " - '  l l > 2 + < l l  C N-" II> 

x < l l  C " - ' [ D C N - " E - - E C N - " D ]  C " - '  I1>} (C32) 

Now, due to the particle-hole symmetry (C24) the first two sums in (C32) 
cancel and one is left to compute, after using D = C - E ,  

I N 
y~p(~e)s(~e)= - = ~ -  y. <il c ~'-" IX> 
,e Z-N,,=1 

x [ < l l  CNEC " - ' I I > - < I [ C " - I E C l v l I > ]  (C33) 

Using (C19), one finds 

p ( ~ )  s(C~ ) = 1 ,e - Z---TN [ < 11 CNE(DC N - CND) l1 ) 

- < 11 (CUE - EcN) ECN I I > ] 

1 
= --~--~- < I I CNE(D - E) C N [1 > (C34) 

zTv 

Equation (C27) then gives 

Y',p(Cg)s(~g)= -~--~ 2<11C 2N+' I I > - ~ < l l  II> 2 -  <ll II> 

(c351 

Calculation of (C10) for o=13=1.  The calculation of 
Z,6,~e' Mr( cr ~r p(Cr s(Cr involves <KI G" IL,,> [see (C10)], but since 
IL,,> given by (C1 I) is symmetric in its first and third components, as is 
the action (C14) of G, it is clear that 

< KI G" IL,,> =- < K'I G" IL,,> (C36) 

where 

<,,<1,} ,c37, 
i = 2  i = 2  
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One can check that 

(K'f G" rx> lY> [z> 

=�89 {(1[ C" Ix ) ( l l  C "+ '  I z ) + ( 1 1 C "  Iz) ( l l  C "§  Ix) 

+ ( I I  C" Ix+ y + z - 1 ) ( l l  C ''+~ l y - l )  

+ ( l l  C m l Y -  l ) ( l l  C "+~ I x + y + z -  1> 

- ( 1 1 C " l y + z -  1 ) (11C "+~ I x + y -  1) 

- ( l l  C " I x + y -  1>(11C ''+~ [ y + z - 1 ) }  (C38) 

satisfies the recursion (C14) and initial conditions (m = 0) 

( g ' l l x )  l y ) l z ) = � 8 9  if y>~2 

=0  if y = l  

Performing the sums over x and z as was done to obtain (C31), one finds 

N - - I  

E (K ' I  G N - " - '  IL,,) 
n = l  

N - - I  

_ 1 C u -  1 - " D C " -  1 CN-,,DC,, - l - ~  Z {2(11 I1)(11 I1) 
n = l  

- 2 ( 1 1 C N - ' - " ( E - 1 ) D C  ' - '  I 1 ) ( 1 1 C N - " ( E - 1 ) D C  "-~ I1> 

+ ( 1 1 C  N-"  I1) 

x ( II C " - ' E [ ( D - -  1) c N - l - n ( E  - 1 ) -  C N - '  - " ]  D C  n - '  I 1 >  

+ ( 1 1 C  N - l - "  I1) 

x ( 11 C " - ' E [ ( D -  1) CU-"(E  - 1 ) -  C N - ' ]  D C " - '  I1>} 

(C39) 

Expression (C39) can be simplified using (C21) and (C24), 

N - - I  

(K'I G N . . . .  1 IL,,) 
n ~  I 

N - - I  

= Y', {<11CN-'-"DC " - 1  I1)( l l  C N - " D C  "-~  It) 
n =  I 

- ( 1 1 C " - ' - " g c  "-1 I1>(11CN-"EC " - '  I1) 

+ �89  C N-"  I1)(11 C " - ' [  D C N - ' - " E - - E C N - ' - " D ]  C " - '  I1} 

+ �89  N - ' - "  I1 ) (11C"- ' [DCN-"E- -ECN-"D]  C n- I  I1)} 

(C40) 
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The first two sums in (C40) may be computed using D = C -  E and (C26), 

N - - I  

{<11CN-~-"DC "-~ I1><11CN-"DC " - t  II> 
t t t  ~ ] 

-<11CN- ' -"EC " - '  II><ll C N - " E C  " - ]  I1>} 
N - - I  

= Z {<1[ c N-' II><11 c N I I > - < l l  c N - '  I1><11CN-"EC " - '  I1> 
n =  | 

-<1[ cNII><ll C N - I - " E C  " - '  I1)} 

=<11 C N-~ 11>2-�89 N II><ll C N - t  11> (C41) 

The last two sums is (C40) may be evaluated by using (19), after using 
D =  C - E :  

N 
�89 ~ <11C N-"  I1>[<11CN-'EC "-~ I1> --<11C"-IEC N - l  11>] 

n ~  1 

N - - I  

+�89 F. <11 c u - * - "  I1>[<11 CNEC " - '  I1> --<II C " - I E C N ] I > ]  

=�89 I1>--�89 [ C N E -  E C  N] E C  N - '  It> 

+�89 C N E [ D C N - ' - - c N - ' D ]  I1> 

--�89 [ C N - ~ E - E C  N - ' ]  E C  n [1> 

=�89 C N - * E ( D - E )  C n 11>-�89 C N E ( E -  D) C N-* I1> 

= �89 c N - I E ( D - - E )  C N I I > -  �89 11 C N - * ( D - E )  D C  N I1> 

=2<11C'-NII>--3<ll C N - '  II><ll CNII>--�89 C 2N+' I1> (C42) 

Putting (C10) and (C40)-(C42) together, one obtains 

M,(~, ~') p(~') s(C#) 
cge6", 

1 [2<llC2N,I> 1 C 2 N + I  C N C N - I  ] = --Z---~N --~<ll  I I > - < l l  II><ll 11> 

(C43) 

Calculation of A for o = 13 = 1. The diffusion constant is given by 
[cf. (24)] 

d = J + 2  ~ M,(Cg, c g ' ) p ( C g ' ) s ( ~ ) - 2 J ~ p ( C g ) s ( C g )  (C44) 
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Using (C35) and (C43) and recalling that J=ZN_~/ZN and 
ZN = ( II C N I1 ),  one obtains 

2 f [ , c2N+2 ] A - ( 1 1 C N I I > 3  (11C N - ' I I >  2(11C 2 N + ' 1 1 > - ~ ( 1 [  II> 

[ 1 1t - - (11CN[1)  2(11 c 2 N [ I ) - - ~ ( I [  C 2N+~ 11) (C45) 

Now (C22) gives 

( 1 1 C N I l > -  ( 2 N +  2)! (C46)  
(N+2)!  ( N +  1)! 

and using this, one can check that (C45) simplifies to 

3(4N+ 1)! [N! (N+2) ! ]  z 
A -  2 [ (2N+ 1)!]  3 (2N+3)! (C47) 

This result is the same as that conjectured in ref. 25, up to a factor 
1/(N+ 1), which had been forgotten in Eq. 49 of ref. 25. 

C.2. The Case a + I] = 1 

In this case it is known that the matrices D and E can be chosen as 
scalars (14) 

1 1 
D = - "  E = -  

fl' 0~ 

Therefore we have 

1 1 1 
C = ~ + P-~ = P--Z and J = ctfl 

The matrices X and Y are then simply infinite matrices with scalar 
elements: /ljooo / / 

I//~ 1/~ o /o 
0 1/fl 1/o~ 0 

X =  0 0 1/fl 1/o~ ' Y =  0 

0 0 0 .~ 
1//~ 1/. o 
o i/p 1/~, 
o o 1/p 
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and G = D | 1 7 4  Y is simply (1 /~)X+ (l/c0 Y. 
It will be convenient to introduce the matrix T =  (~fl)~-G, 

_~ 0 o 0 "/ 
2 2~fl f12 0 0 

T =  (~p) z ~ x + ~  o ~ 2~/~ /~'- (C48) 

The two sums to be computed in the expression of A [see (24)] then take 
the following forms: 

~'.p(ff)s(~g) = -(c~fl)'-N(W] X +  1- Y IV) = - ( W I T N I V )  

(C49) 

~, M,(C~,~g,) p(Cg,)s(Cg)= _(~fl)2 ( W[ XT u-  ' IV) 
eg ,tq' 

= -(~P) '-  (11 T N-' I1)-~--~ ( W I T  N-' IV) 

= --o~2fl-- (~fl)( W[ T u - '  I V) (C50) 

To obtain the last two equalities we used the fact that (W[ X =  
(1/fl)(ll+(t/o~fl)(W[ and that (11 is an eigenvector of T. One finally 
derives the expression for A, 

A = ~ f l + 2 ~ p { ( W I  TNIV) - - ( I4q  T N-I [V)-0c} (C51) 

The matrix element (IV] Tu[V)  can be calculated with the help of 
generating functions: 

Fk(2)= ~ (kl T"IV)  2" 
n = 0  
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These functions satisfy the following recursion: 

1 
F~(2) = 1 - 2  

Fk(2)=2{a'-Fk_,(2)+2aflFk(2)+fl2Fk+,(2)} for k>_-2 

The solution of this recursion is readily found: 

r k - t  1 -2af t2  - ( I  -4aft2)  In 
F k ( 2 ) = l _  2 with r =  2fl22 

Thus the term ( IV] T ~ IV) is the coefficient of 2 N in 

~. Fk(A)= 1 1 
k=_' 1 --~ + (1 --2)(1 --r) 

which, using ~ + fl = 1, 

1 - ( 1  - 4 x )  u2 ~ (2n)! 

2x - ,,~o= nw' (n + 1 )! 
X n 

is found to be 

u -  t ( 2 k ) !  
( W] T N IV) =NoL--afl ~ ( N - k )  k ! ( k+  1)! (afl)k 

k = O  

After substituting this coefficient in (C51), one obtains the following 
expression for A: 

N--I (2k)! 
A =o~fl--2(o~fl) 2 ~ (o~fl)kk! ( k+  I)! 

k ~ O  

Or, equivalently, 

N- I (2k)! ) 
A = J  1 - 2 J  ~ k ! ( k + l ) i J  k 

k = 0  

(cse) 
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